53 research outputs found

    Knockout of the Arp2/3 complex in epidermis causes a psoriasis-like disease hallmarked by hyperactivation of transcription factor Nrf2

    Get PDF
    Arp2/3 complex assembles branched actin filaments key to many cellular processes, but its organismal roles remain poorly understood. Here we employed conditional arpc4 knockout mice to study the function of the Arp2/3 complex in the epidermis. We found that depletion of the Arp2/3 complex by knockout of arpc4 results in skin abnormalities at birth that evolve into a severe psoriasis-like disease hallmarked by hyperactivation of transcription factor Nrf2. Knockout of arpc4 in cultured keratinocytes was sufficient to induce nuclear accumulation of Nrf2, upregulation of Nrf2-target genes and decreased filamentous actin levels. Furthermore, pharmacological inhibition of the Arp2/3 complex unmasked the role of branched actin filaments in Nrf2 regulation. Consistently, we unveiled that Nrf2 associates with the actin cytoskeleton in cells and binds to filamentous actin in vitro. Finally, we discovered that Arpc4 is downregulated in both human and mouse psoriatic epidermis. Thus, the Arp2/3 complex affects keratinocytes' shape and transcriptome through an actin-based cell-autonomous mechanism that influences epidermal morphogenesis and homeostasis

    Chemerin expression marks early psoriatic skin lesions and correlates with plasmacytoid dendritic cell recruitment

    Get PDF
    Psoriasis is a type I interferon-driven T cell–mediated disease characterized by the recruitment of plasmacytoid dendritic cells (pDC) into the skin. The molecules involved in pDC accumulation in psoriasis lesions are unknown. Chemerin is the only inflammatory chemotactic factor that is directly active on human blood pDC in vitro. The aim of this study was to evaluate the role of the chemerin/ChemR23 axis in the recruitment of pDC in psoriasis skin. Prepsoriatic skin adjacent to active lesions and early lesions were characterized by a strong expression of chemerin in the dermis and by the presence of CD15+ neutrophils and CD123+/BDCA-2+/ChemR23+ pDC. Conversely, skin from chronic plaques showed low chemerin expression, segregation of neutrophils to epidermal microabscesses, and few pDC in the dermis. Chemerin expression was localized mainly in fibroblasts, mast cells, and endothelial cells. Fibroblasts cultured from skin of psoriatic lesions expressed higher levels of chemerin messenger RNA and protein than fibroblasts from uninvolved psoriatic skin or healthy donors and promoted pDC migration in vitro in a chemerin-dependent manner. Therefore, chemerin expression specifically marks the early phases of evolving skin psoriatic lesions and is temporally strictly associated with pDC. These results support a role for the chemerin/ChemR23 axis in the early phases of psoriasis development

    Extracellular serine empowers epidermal proliferation and psoriasis-like symptoms

    Get PDF
    The contribution of nutrient availability to control epidermal cell proliferation, inflammation, and hyperproliferative diseases remains unknown. Here, we studied extracellular serine and serine/glycine metabolism using human keratinocytes, human skin biopsies, and a mouse model of psoriasis-like disease. We focused on a metabolic enzyme, serine hydroxymethyltransferase (SHMT), that converts serine into glycine and tetrahydrofolate-bound one‑carbon units to support cell growth. We found that keratinocytes are both serine and glycine auxotrophs. Metabolomic profiling and hypoxanthine supplementation indicated that SHMT silencing/inhibition reduced cell growth through purine depletion, leading to nucleotide loss. In addition, topical application of an SHMT inhibitor suppressed both keratinocyte proliferation and inflammation in the imiquimod model and resulted in a decrease in psoriasis-associated gene expression. In conclusion, our study highlights SHMT2 activity and serine/glycine availability as an important metabolic hub controlling both keratinocyte proliferation and inflammatory cell expansion in psoriasis and holds promise for additional approaches to treat skin diseases

    Sirtinol Treatment Reduces Inflammation in Human Dermal Microvascular Endothelial Cells

    Get PDF
    Histone deacetylases (HDAC) are key enzymes in the epigenetic control of gene expression. Recently, inhibitors of class I and class II HDAC have been successfully employed for the treatment of different inflammatory diseases such as rheumatoid arthritis, colitis, airway inflammation and asthma. So far, little is known so far about a similar therapeutic effect of inhibitors specifically directed against sirtuins, the class III HDAC. In this study, we investigated the expression and localization of endogenous sirtuins in primary human dermal microvascular endothelial cells (HDMEC), a cell type playing a key role in the development and maintenance of skin inflammation. We then examined the biological activity of sirtinol, a specific sirtuin inhibitor, in HDMEC response to pro-inflammatory cytokines. We found that, even though sirtinol treatment alone affected only long-term cell proliferation, it diminishes HDMEC inflammatory responses to tumor necrosis factor (TNF)α and interleukin (IL)-1β. In fact, sirtinol significantly reduced membrane expression of adhesion molecules in TNFã- or IL-1β-stimulated cells, as well as the amount of CXCL10 and CCL2 released by HDMEC following TNFα treatment. Notably, sirtinol drastically decreased monocyte adhesion on activated HDMEC. Using selective inhibitors for Sirt1 and Sirt2, we showed a predominant involvement of Sirt1 inhibition in the modulation of adhesion molecule expression and monocyte adhesion on activated HDMEC. Finally, we demonstrated the in vivo expression of Sirt1 in the dermal vessels of normal and psoriatic skin. Altogether, these findings indicated that sirtuins may represent a promising therapeutic target for the treatment of inflammatory skin diseases characterized by a prominent microvessel involvement

    Inhibition of inflammatory and proliferative responses of human keratinocytes exposed to the sesquiterpene lactones dehydrocostuslactone and costunolide

    Get PDF
    The imbalance of the intracellular redox state and, in particular, of the glutathione (GSH)/GSH disulfide couple homeostasis, is involved in the pathogenesis of a number of diseases. In many skin diseases, including psoriasis, oxidative stress plays an important role, as demonstrated by the observation that treatments leading to increase of the local levels of oxidant species ameliorates the disease. Recently, dehydrocostuslactone (DCE) and custonolide (CS), two terpenes naturally occurring in many plants, have been found to exert various anti-inflammatory and pro-apoptotic effects on different human cell types. These compounds decrease the level of the intracellular GSH by direct interaction with it, and, therefore, can alter cellular redox state. DCE and CS can trigger S-glutathionylation of various substrates, including the transcription factor STAT3 and JAK1/2 proteins. In the present study, we investigated on the potential role of DCE and CS in regulating inflammatory and proliferative responses of human keratinocytes to cytokines. We demonstrated that DCE and CS decreased intracellular GSH levels in human keratinocytes, as well as inhibited STAT3 and STAT1 phosphorylation and activation triggered by IL-22 or IFN-\u3b3, respectively. Consequently, DCE and CS decreased the IL-22- and IFN-\u3b3-induced expression of inflammatory and regulatory genes in keratinocytes, including CCL2, CXCL10, ICAM-1 and SOCS3. DCE and CS also inhibited proliferation and cell-cycle progression-related gene expression, as well as they promoted cell cycle arrest and apoptosis. In parallel, DCE and CS activated the anti-inflammatory EGFR and ERK1/2 molecules in keratinocytes, and, thus, wound healing in an in vitro injury model. Taken together, our findings encourage the employment of DCE and CS in psoriasis, as they could efficiently counteract the pro-inflammatory effects of IFN-\u3b3 and IL-22 on keratinocytes, revert the apoptosis-resistant phenotype, as well as inhibit hyperproliferation in the psoriatic epidermis

    IL-17 amplifies human contact hypersensitivity by licensing hapten nonspecific Th1 cells to kill autologous keratinocytes

    Get PDF
    Th17 is a newly identified lineage of effector T cells involved in autoimmunity and immune responses to pathogens. We demonstrate in this study the pathogenic role of IL-17-producing CD4(+) T lymphocytes in allergic contact dermatitis (ACD) to skin-applied chemicals. IL-17(+) T cells infiltrate ACD reactions and predominantly distribute at the site of heavy spongiosis. Skin IL-17(+) T cells were functionally and phenotypically heterogeneous: although pure Th17 prevailed in ACD skin, hapten responsiveness was restricted to Th1/IL-17 (IFN-gamma(+)IL-17(+)) and Th0/IL-17 (IFN-gamma(+)IL-17(+)IL-4(+)) fractions, and to lesser extent Th2/IL-17 cells. In the IFN-gamma-dominated ACD environment, IL-17-releasing T cells affect immune function of keratinocytes by promoting CXCL8, IL-6, and HBD-2 production. In addition, compared with Th1, supernatants from Th1/IL-17 T cells were much more efficient in inducing ICAM-1 expression on keratinocytes and keratinocyte-T cell adhesiveness in vitro. As a consequence, exposure to combined IFN-gamma and IL-17 rendered keratinocytes susceptible to ICAM-1-dependent Ag nonspecific T cell killing. Thus, IL-17 efficiently amplifies the allergic reaction by rendering virtually all of the T lymphocytes recruited at the site of skin inflammation capable to directly contribute to tissue damage

    PI3Kδ Sustains Keratinocyte Hyperproliferation and Epithelial Inflammation: Implications for a Topically Druggable Target in Psoriasis

    No full text
    The phosphatidylinositol 3-kinase (PI3K)-dependent signaling pathway is aberrantly activated in psoriatic lesions and contributes to disease pathogenesis. Among PI3Ks enzymes, PI3Kα, β, and δ isoforms are known to bind the p85 regulatory subunit and mediate activation of AKT and other downstream effectors. In this study, we deepened our understanding of the expression and function of PI3Kδ in skin lesions of patients affected by psoriasis. For the first time, we found that PI3Kδ is overexpressed in psoriatic plaques, and its expression is not only confined to infiltrating immune cells but also accumulates in proliferating keratinocytes of the epidermal basal layer. We investigated the function of PI3Kδ in psoriatic skin by evaluating the impact of seletalisib, a newly developed selective PI3Kδ inhibitor, in both in vitro and in vivo experimental models of psoriasis. Of note, we found that PI3Kδ sustains keratinocyte hyperproliferation and impaired terminal differentiation induced by IL-22, as well as induces epithelial inflammation and resistance to apoptosis mediated by TNF-α in human keratinocytes. Mechanistically, PI3Kδ promotes PDK1 phosphorylation and signals through AKT-dependent or -independent pathways. It is worth mentioning that PI3Kδ inhibition by seletalisib attenuates the severity of psoriasiform phenotype induced in the Imiquimod-induced mouse model of psoriasis by restoring the physiological proliferation and differentiation programs in epidermal keratinocytes and contrasting the cutaneous inflammatory responses. Therefore, we suggest PI3Kδ as a potential topically druggable target in psoriasis and skin diseases characterized by epidermal hyperproliferation and skin inflammation
    • …
    corecore